On the estimation of the mean of a random vector
نویسندگان
چکیده
We study the problem of estimating the mean of a multivariate distribution based on independent samples. The main result is the proof of existence of an estimator with a non-asymptotic sub-Gaussian performance for all distributions satisfying some mild moment assumptions.
منابع مشابه
Empirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کاملTracking performance of incremental LMS algorithm over adaptive distributed sensor networks
in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...
متن کاملConfidence Interval Estimation of the Mean of Stationary Stochastic Processes: a Comparison of Batch Means and Weighted Batch Means Approach (TECHNICAL NOTE)
Suppose that we have one run of n observations of a stochastic process by means of computer simulation and would like to construct a condifence interval for the steady-state mean of the process. Seeking for independent observations, so that the classical statistical methods could be applied, we can divide the n observations into k batches of length m (n= k.m) or alternatively, transform the cor...
متن کاملComparison and evaluation of intelligent models for river suspended sediment estimation (case study: Kakareza River, Iran)
Sediment transport constantly influences river and civil structures and the lack ofinformation about its exact amount makes management efforts less effective. Hence,achieving a proper procedure to estimate the sediment load in rivers is important. We usedsupport vector machine model to estimate the sediments of the Kakareza River in LorestanProvince and the results were compared with those obta...
متن کاملNonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}
The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کامل